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Abstract This article examines the utilization of a spatial averaging technique that
applies filtering to the nonlinear terms of the partial differential equations as an in-
viscid shock-regularization of hyperbolic conservation laws. A central motivation is to
promote a recently developed filtering technique, rather than viscous regularization,
as an alternative to the simulation of shocks and turbulence for inviscid flows. On
the other hand, the results generalize and unify previous mathematical and numerical
analysis of the method applied to the one-dimensional Burgers’ and Euler equations.
This article primarily concerns the mathematical analysis of this filtering technique
and examines two fundamental issues. The first is the global existence and uniqueness
of classical solutions for the regularization under the more general setting of quasilin-
ear, symmetric hyperbolic systems in higher dimensions. The second issue examines
one-dimensional scalar conservation laws and shows that the inviscid regularization
method captures the unique entropy or physically relevant solution of the original,
non-averaged problem as filtering vanishes.
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1 Introduction

The governing equations for inviscid fluid flow—the Euler equations—although well-
known, still pose great challenges in their computation. This difficulty is attributed
to the nonlinear convective term in the equations and obtaining a deeper understand-
ing of this model centers on generating novel methods for studying two important
features: shock formation along with its regularization and turbulence. More specif-
ically, the culprits are the nonlinear terms which are responsible for the continuous
generation of energy transfered to ever smaller scales resulting in a very high reso-
lution problem. It is customary in many numerical simulations to introduce artificial
viscosity into the Euler equations to mitigate this energy cascade and resolve the
smaller scales thereby circumventing the computational difficulties. Alternatively, the
regularization technique studied in this article implements a Leray-type filtering or
spatial averaging of nonlinear terms in order to achieve the same goal, however, the
focus here centers on scalar conservation laws as a regularization of shocks. When ap-
plied to scalar conservation laws, the regularization can be regarded as an averaging
of the characteristics and it is a direct extension of the technique proposed in [24] in
which averaging of the convective term is introduced in the Burgers’ equation via the
Helmholtz filter: 

∂tu
α + uαuαx = 0,

uα = gα ∗ uα,
gα(x) = 1

2αe
−|x|/α,

(1.1)

where ∗ denotes the convolution product. Informally speaking, the technique in this
article regularizes scalar conservation laws,

∂tu+ f(u)x = 0,

into the form

∂tu+
∂f

∂u
ux = 0,

where the filtered quantity is the convolution product of that term with respect to
some averaging kernel as was done in (1.1). This approach is not without proper phys-
ical development in the sense that we do not just apply filtering casually. Interestingly
enough, this implementation of filtering to the nonlinear term can be interpreted as
an extension of the observable divergence method introduced in [23,26]. In fact, the
two regularization techniques are equivalent with respect the Helmholtz filter and
for quadratic polynomial fluxes, and the reader is referred to [23] for more details
on the observable divergence method including the physical derivation of the filtered
conservation laws from basic principles.

Let us briefly motivate why we strongly believe that this approach may possess
favorable attributes and advantages over viscous regularization; we demonstrate this
by considering the simplest case of a nonlinear transport equation that exhibit shocks:
the initial value problem to Burgers’ equation,{

∂tu
ε + uεuεx = εuεxx,
uε(x, 0) = u0(x).

(1.2)

In the presence of viscosity (ε > 0), the equation is of the parabolic type and the
regularizing effects of viscous perturbations are well-known. This may be thought
of as a global regularization since the solution depends on the initial condition i.e.
information propagates at ‘infinite’ speed. The filtered equation (1.1) is modified
locally in the sense that the characteristics are mollified so that the equation is still of
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the hyperbolic type and information propagates along characteristics at finite speed.
It is reasonable to suggest that this mollification of the characteristics may preserve
important features of the Burgers’ equation. Moreover, there is still much debate
on the limit of vanishing viscosity for the full Euler equations. Thus, this notion of
applying an averaging process instead as a potential alternative to alleviating the
computational issues in the simulation of inviscid flows has garnered some recent
attention [3,7,16,24,27,28,29]. Although the previous remarks regarding the potential
effectiveness of this averaging framework seems reasonable, a rigorous mathematical
analysis of the technique is required and will be the main objective of this paper. More
precisely, we address the following theoretical aspects for the regularization technique
applied to scalar conservation laws: determine the suitable conditions in order to

– establish the global existence and uniqueness of classical solutions,
– establish the convergence to weak solutions, and
– verify that the limiting weak solution is entropy admissible.

Let us remark on some past results for (1.1). In [3], the global well-posedness of regu-
lar solutions and the convergence to weak solutions as α vanishes was shown for (1.1)
including supporting numerical results suggesting that the entropy solution is cap-
tured. The authors in [27] examined the multi-dimensional version of this regularized
Burgers’ equation and developed similar results such as global existence and unique-
ness of classical solutions. They also studied the conserved quantities, traveling wave
solutions, spectral energy decay properties of this regularized model and numerically
compared its smoothing features with the case when viscosity is present. The conver-
gence as filtering vanishes to the entropy solution was partially resolved in [28] for C1

bell-shaped initial conditions. Here the approach for showing convergence to the en-
tropy solution uses the Lax admissibility condition rather than the Krǔzkov entropy
condition, therefore the methods used are vastly different than the ones presented
here. So it is interesting to note that one can approach this question of uniqueness of
physical solutions using different admissibility conditions. Another work examining
convergence to the unique solution of an initial-boundary value problem as viscosity
vanishes using non-Krǔzkov conditions can be found in [1].

We should mention, though, that such an idea is not entirely new. Leray pro-
posed using a filtered convective velocity to study the Navier-Stokes equations [18].
This influenced the investigation of the Leray-α models of turbulence [7,19], and the
Lagrangian Averaged Navier-Stokes-α (LANS-α) implements similar filtering to suc-
cessfully model turbulent incompressible flows [6,11,14,13,21,25,31]. On the other
hand, we must stress that we are adopting filtering in a slightly different approach.
From a computational standpoint, this method can be implemented in the modeling of
inviscid fluid flows. Since both turbulence and shock formation are nonlinear features,
we believe that filtering may lead to a method that can model both nonlinear features
in one single comprehensive technique. In this manuscript, this filtering addresses the
first issue—determining its potential as a shock regularization technique. In the time
of this writing, we are not aware of any other work in the literature which considers
this approach in the general setting of hyperbolic conservation laws.

As a regularization of shocks, it is quite natural to seek an understanding of the
‘smoothing’ effects that such an averaging procedure will have on these evolution
equations. For instance, recall that it is well-known that hyperbolic conservation laws
generally exhibit finite-time gradient blow-up of classical solutions even if the ini-
tial data is smooth. Consequently, this leads us to seek global-in-time solutions in a
broader class of discontinuous functions and to introduce so-called entropy conditions
to identify physically relevant solutions. In fact, such entropy conditions may allow for
the uniqueness and stability of these entropy solutions as illustrated by the Krǔzkov
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estimates for scalar conservation laws [4,8,12]. Hence, in this manuscript, we apply
this technique of spatial averaging or filtering of the non-linear terms in the partial dif-
ferential equations (PDEs) with the purpose of establishing the analytical properties
settling the debate on its validity as a shock-regularization technique. More precisely,
we verify two very fundamental properties. First, the regularized PDEs should possess
the global existence and uniqueness of classical solutions. Second, and perhaps the
more difficult property to prove, is the convergence of the regularized solutions to the
physically relevant entropy solution of the original problem as filtering vanishes. We
should mention as well that the global existence theory developed here unifies and
further generalizes the results obtained in [27,29].

This manuscript is organized as follows. Section 2 introduces our regularization
technique along with the class of averaging kernels or filters that will be considered.
In section 3, we extend our regularization technique to more general quasilinear,
symmetric, hyperbolic systems

∂tu+

n∑
i

Ai(x, t, u)uxi = h(x, t, u) in Rn × (0, T ). (1.3)

Here we provide a theorem addressing the sufficient conditions that guarantee the
global well-posedness of classical solutions for the Cauchy problem to (1.3) with spa-
tial averaging. We remark that in comparison with the previous references, our proof
moves away from the use of the method of characteristics, and in turn allows us
to obtain global well-posedness for a larger class of hyperbolic problems in higher
dimensions. Nonetheless, the establishment of the energy estimates illustrates the
mechanism in the filtering which prevents the blowup of solutions. In section 4, we
describe the conditions required to show that the sequence of regularized solutions to
non-homogeneous conservation laws (with source terms) converges to a weak solution
of the original system. Furthermore, in the absence of source terms, we prove that this
limit is entropy admissible. We study the case with quadratic flux and the Helmholtz
filter as a motivating example. Here we exploit the special structure inherent in this
case. Consequently, it demonstrates why the past references achieved the aforemen-
tioned results limited to this simple case. The final section provides some concluding
remarks and suggestions for possible directions and generalizations to this averaging
method. This includes several proposed extensions such as the observable divergence
method which appear to be computationally favorable in the study of the 1d Euler
equations. Other important considerations include initial-boundary value problems
for this inviscid regularization.

2 Filters and the method of spatial averaging

Let G be a given real-valued function in W 1,1(Rn) that is positive, symmetric, and
monotonically decreasing with unit length in L1(Rn). The function G will be referred
to as a filter or averaging kernel. In addition, we shall prescribe a fixed parameter,
α > 0, to the filter such that

Gα =
1

αn
G
(x

α

)
.

This parameter α acts as a scaling of the filter and controls the level of averaging
and allows us to interpret the α → 0 limit to be when filtering vanishes. In fact, Gα

converges to the Dirac delta distribution as filtering vanishes. Table 2.1 summarizes
the properties for the filters that we shall consider.
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Properties Mathematical Expression

Normalized ‖G‖L1(Rn) = 1

Non-negative G(x) > 0 for all x ∈ Rn

Symmetric |x1| = |x2| ⇒ |G(x1)| = |G(x2)|
Non-increasing |x1| ≤ |x2| ⇒ |G(x1)| ≥ |G(x2)|

Table 2.1 The properties of the averaging kernels

Remark: One example of a commonly applied filter is the Helmholtz filter, f =
f − fxx, corresponding to the averaging kernel G = 1

2e
−|x|. This filter was extended

then studied in [28] to filters satisfying the form

f =

1 +

N0∑
j=1

(−1)jCj
∂2j

∂x2j

 f

for some finite natural number N0 and constants Cj .
In section 3, we consider the Cauchy problem∂tu+

n∑
i=1

Ai(x, t, u)uxi = h(x, t, u) in UT = Rn × (0, T ),

u(x, 0) = u0(x) for x ∈ Rn.
(2.1)

Here, the Ai’s are symmetric N ×N matrix-valued maps defined on Rn× [0, T ]×RN ,
u and h are N vector-valued maps on Rn × [0, T ] and Rn × [0, T ]×RN , respectively.
Let Hk and W k,p denote the Sobolev spaces Hk(Rn,RN ) and W k,p(Rn,RN ) equipped
with their usual norms ‖ · ‖k := ‖ · ‖Hk and ‖ · ‖k,p := ‖ · ‖Wk,p , respectively.
Given a filter G, our regularization technique modifies (2.1) into∂tu

α +

n∑
i=1

Ai(x, t, uα)uαxi = h(x, t, uα) in UT ,

uα(x, 0) = u0(x) for x ∈ Rn,
(2.2)

where the bar represents the convolution product taken with respect to the filter G
in the x-variables. More precisely,

Ai =
[
ajli

]
=
[
Gα ∗ ajli (x, t, uα)

]
=

[∫
Rn
Gα(x− y)ajli (y, t, uα(y, t)) dy

]
.

In section 4, we study the corresponding scalar conservation law{
∂tu+ f(u)x = h(x, t, u) in R× (0, T ),

u(x, 0) = u0(x) for x ∈ R,

which is regularized into its filtered quasilinear counterpart{
∂tu

α + a(uα)uαx = h(x, t, uα) in R× (0, T ),
uα(x, 0) = u0(x) for x ∈ R,

where a = ∂f
∂u . For the sake of brevity, we sometimes omit the α–superscript in the

averaged equations above, however, it should always be assumed that a corresponding
α is given.
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3 Global existence for quasilinear, symmetric hyperbolic systems

This section provides the sufficient conditions which guarantee the existence and
uniqueness of classical solutions for the regularized problem (2.2). We incorporate the
usual methods for quasilinear, symmetric hyperbolic systems and illustrate through
the Sobolev energy estimates the regularizing effects of averaging the nonlinear terms
of the equations through a low pass filter such as the Helmholtz filter. Although the
main idea is standard, we provide a detailed overview of the proof for the sake of
completeness. Moreover, we briefly state some basic existence theory and Hk-energy
estimates for linear systems under (C-1) conditions; but the reader is referred to [5,
10,15,20,22,30] for further details.

Quasilinear symmetric hyperbolic systems

Define BR ⊂ Hk to be the closed ball with radius R. The following conditions are
assumed and will be referred to as condition (C-2).

(a) k > 1 + n/2 and u0 ∈ Hk.
(b) For given u ∈ Hk, Ai(x, t, u(x, t)) and h(x, t, u(x, t)) are Hk-functions that satisfy

(C-1) i.e.
– Ai are symmetric.
– t 7→ Ai(t)

.
= Ai(·, t) is of class C([0, T ], Hk(Rn,RN2

)).
– t 7→ h(t)

.
= h(·, t) is of class C([0, T ], Hk(Rn,RN )).

(c) The maps u ∈ BR 7→ Ai(x, t, u) and u ∈ BR 7→ h(x, t, u) are bounded (maps
bounded sets to bounded sets in Hk) and are C1 maps with bounded derivatives.

The main global existence result is given in the follow theorem.

Theorem 3.1 For each α > 0, the initial value problem (2.2) under (C-2) conditions
has a unique global-in-time classical solution.

Background on linear systems

Consider the linear system

vt +

n∑
i=1

Ai(x, t)vxi = h(x, t) in UT , (3.1)

satisfying (C-1) with initial value v(x, 0)
.
= v(0) = v0(x).

Proposition 3.2 Suppose that

v ∈ C([0, T ], Hk) ∩ C1([0, T ], Hk−1),

satisfies the initial value problem to (3.1), then u satisfies the energy estimate

max
0≤t≤T

(‖v(t)‖k + ‖vt(t)‖k−1) ≤ CkeβkT
(
‖v(0)‖k +

∫ T

0

‖h(s)‖k ds

)
, (3.2)

where the constants Ck and βk depend on the Hk–norms of Ai.

Proposition 3.3 The initial value problem to the linear system (3.1) has a unique
solution of class C([0, T ], Hk) ∩ C1([0, T ], Hk−1).
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Proof of Theorem 3.1

The proof is given in three main steps. In step 1, we set up an approximate iteration
of linear systems along with a corresponding transformation related to the global
solutions to these linear systems. In step 2 we show that this transformation is a strict
contraction on an appropriate function space for sufficiently small time. Further, the
unique fixed point of this contraction map agrees with the unique short-time classical
solution of the quasilinear IVP. Step 3 applies Sobolev energy estimates to extend
this unique classical solution further in time.

Proof Step 1: Choose an arbitrary T > 0. We shall prove existence of solutions up
to this arbitrary time. First construct the linear problem:

vt +Ai(x, t, u(x, t))vxi = h(x, t, u) in UT , (3.3)

v(x, 0) = u0(x). (3.4)

where the subscript i is short-hand for summation from 1 to n. The global existence
and uniqueness of solutions v ∈ C([0, T ], Hk)∩C([0, T ], Hk−1) to this IVP holds. The
first step to showing existence of a solution of the quasilinear system is to consider the
transformation T defined by v = T u where u is given and v is the solution of (3.3)–
(3.4). Our goal is to prove this transformation is a strict contraction on a suitable
function space. We consider

u ∈ Xk,τ .
= C([0, τ ], Hk(Rn,RN )).

Using the energy estimates, one has

max
0≤t≤τ

(‖v(t)‖k + ‖vt(t)‖k−1) ≤ Ckeβkτ
(
‖v(0)‖k +

∫ τ

0

‖h(s)‖k ds
)
. (3.5)

Define

Bk,τR
.
= {u ∈ Xk,τ : ‖u‖Xk,τ ≤ R}.

It is clear from (3.5) that T maps Bk,τR to itself for sufficiently small τ and a suitable

R. We now show that T is a contraction on Bk,τR in the X0,τ -norm. Let vj = T uj for
j = 1, 2 and set w = v1 − v2. Then w satisfies the linear system

wt +Ai(u1)wx = H(x, t) and w(0) = 0,

where H(x, t) = h(x, t, u1) − h(x, t, u2) + (Ai(x, t, u2) − Ai(x, t, u1))(v2)x. From the
Lipschitz continuity of Ai and h with respect to u and the Sobolev embedding,
‖H(t)‖0 ≤ C‖u1 − u2‖0 where the constant C depends on R and the Lipschitz con-
stants of Ai and h. Using the energy estimate (3.2), we obtain

max
0≤t≤τ

‖T u1 − T u2‖20 ≤ C0e
β0ττ max

0≤t≤τ
‖u1 − u2‖20.

Hence T : Bk,τR 7→ Bk,τR is a strict contraction with respect to the X0,τ -norm for
sufficiently small τ .

Consider the iteration scheme: let u(j+1) = T u(j) with u(0) = u0. As a consequence
of the contraction mapping principle, u(j) converges to a unique u ∈ X0,τ i.e.

lim
j→∞

max
0≤t≤τ

‖u(j) − u‖0 = 0. (3.6)
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Step 2: We show in this step that this limiting function u belongs in C1(Rn ×
[0, τ ],RN ). Energy estimates and interpolation inequalities imply that, for any s with
0 ≤ s < k,

max
0≤t≤τ

‖u(j) − u(l)‖s ≤ C max
0≤t≤τ

‖u(j) − u(l)‖1−s/k0 max
0≤t≤τ

‖u(j) − u(l)‖s/kk

≤ C max
0≤t≤τ

‖u(j) − u(l)‖1−s/k0 . (3.7)

It follows from this and (3.6) that

lim
j→∞

max
0≤t≤τ

‖u(j) − u‖s = 0,

for any 0 ≤ s < k. That is,

u(j) → u ∈ C([0, τ ], Hs(Rn,RN )).

This along with the PDE itself yields u ∈ C1([0, τ ], Hs−1(Rn,RN )) provided that
s > 1 + n/2. Thus

u ∈ C([0, τ ], Hs(Rn,RN )) ∩ C1([0, τ ], Hs−1(Rn,RN )),

i.e. u = u(x, t) is a classical solution by the Sobolev embedding.
Step 3: In this step, we extend the local classical solution of the whole interval [0, T ]
through energy estimates. Once this a priori estimate is established, it will allow us
to repeat the above local existence argument on (τ, 2τ), (2τ, 3τ), (3τ, 4τ), . . . until
we have covered [0, T ]. Let us establish the following energy estimate.

Energy Estimate:
Suppose that u ∈ C([0, τ ], Hk(Rn,RN ))∩C1([0, τ ], Hk−1(Rn,RN )) satisfies the initial
value problem (2.2), then u satisfies the energy estimate.

max
0≤t≤T

(‖v(t)‖k + ‖vt(t)‖k−1) ≤ Ck(T ). (3.8)

Take the L2 inner product between u and (2.2), integrate over space to get

1

2

d

dt

∫
Rn
|u|2 dx+

∫
Rn
u ·Ai(x, t, u)uxi dx =

∫
Rn
u · h(x, t, u) dx.

Using the symmetry of A and integration by parts, the second term on the left-hand
side becomes ∫

Rn
u ·Ai(x, t, u)uxi dx = −1

2

∫
Rn
∂xiAi(x, t, u)u · u dx.

Then Young’s inequality and the Sobolev embedding imply

d

dt
‖u(t)‖20 ≤ (‖G‖1,1‖Ai(x, t, u)‖L∞) ‖u(t)‖20 + 2‖h(t)‖20

≤ C‖u(t)‖20,

so Gronwall’s inequality yields

‖u(t)‖20 ≤ eCT ‖u(0)‖20.
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To establish the estimate for higher-order derivatives, for |α| ≤ k apply Dα to (2.2),
product with Dαu and integrate over space.

d

dt

∫
Rn
|Dαu|2 dx

=

∫
Rn
Dαu ·Dαh dx−

∫
Rn
Dαu ·Dα

(
Ai(x, t, u)uxi

)
dx

=

∫
Rn
Dαu ·Dαh dx

−


∫
Rn
Dαu ·A(x, t, u) (Dαu)xi dx+ . . .+

∫
Rn
Dαu ·DαA(x, t, u)uxi dx︸ ︷︷ ︸

.
=I

 .

(3.9)

The first term in I is handled as in the L2 case using symmetry and integration by
parts,

−
∫
Rn
Dαu ·Ai(x, t, u) (Dαu)xi dx =

1

2

∫
Rn
∂xiA(x, t, u)Dαu ·Dαu dx

≤ 1

2
‖G‖1,1‖Ai(x, t, u)‖L∞

∫
Rn
|Dαu|2 dx.

The last term in I is handled by the Sobolev embedding,∫
Rn
Dαu ·DαAi(x, t, u)uxi dx ≤ ‖uxi‖L∞‖Dαu‖0‖DαAi(x, t, u)‖0

≤ C‖u‖2k.

The intermediate terms in I are handled similarly. These estimates for (3.9) yield

d

dt
‖u(t)‖2k ≤ C‖u(t)‖2k,

so by Gronwall’s inequality,

‖u(t)‖k ≤ Ck(T ).

Similarly, we can use (2.2) directly with the last estimate to compute

‖∂tu(t)‖k−1 ≤ ‖h(x, t, u)‖k−1 + ‖Ai(x, t, u)uxi‖k−1
≤ C‖u(t)‖k−1 + ‖Ai(x, t, u)‖k−1‖u(t)‖k
≤ Ck(T ).

This completes the proof of the theorem.

4 Convergence to the admissible weak solution

Consider the following non-homogeneous scalar conservation law,

∂tu+ f(u)x = h(x, t, u) in UT = R× (0, T ), (4.1)

u(x, 0) = u0(x) for x ∈ R, (4.2)
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where u, f, h are real-valued functions on UT . Let a
.
=
∂f

∂u
and place the same condi-

tions on the resulting averaged equation,

∂tu
α + a(uα)uαx = h(x, t, uα) in UT , (4.3)

uα(x, 0) = u0(x) for x ∈ R, (4.4)

as was given in Theorem 3.1. In addition to these previous assumptions, we place
further conditions as follows.

Further Assumptions: Let h(x, t, 0) ∈ C([0;T ];L1(R)), the initial data u0 is of
class Hk ∩W 1,1(R) (so it has bounded total variation), and let the flux f and the
filter G satisfy the following property:
For each α� 1 and for the corresponding regularized solutions, vα, of (4.3)–(4.4),

∂xa(vα) ≥ ∂xa(vα). (4.5)

Remark: From the previous section, there is no gradient blowup for each α > 0, so
the spatial derivatives of the coefficients in (4.5) exist in the classical sense. Hence,
we may interpret this condition as having a low-pass filter that exacts control as it
acts on the gradient by bounding it below by its mollified version. This suggests that
the chosen averaging kernel may play a role in establishing condition (4.5) in addition
to the flux and the initial data. This observation is revisited for the Helmholtz filter
shortly below.

Our aim for this section is to verify that the global classical solutions for the
Cauchy problem to (4.3)-(4.4) does in fact converge to a weak solution for the Cauchy
problem to (4.1)–(4.2) as α −→ 0+. By a weak solution we mean a solution of the
Cauchy problem in the following sense.

Definition 4.1 A function u : R × [0, T ] 7→ RN is a weak solution of the Cauchy
problem (4.1)–(4.2) if u is continuous as a function from [0, T ] into L1

loc, the initial
condition (4.2) holds and the restriction of u to the open strip UT is a distributional
solution i.e.∫ T

0

∫ ∞
−∞

uφt + f(u)φx + h(x, t, u)φdxdt+

∫ ∞
−∞

u0(x)φ(x, 0) dx = 0, (4.6)

for every C∞ function φ with compact support contained in the set R× (−∞, T ).

The notion for proving the convergence result is summarized in two key steps. In
step 1, the needed uniform, BV , and L1 estimates are established on the sequence of
averaged solutions {uα}α>0 that guarantee compactness in C([0, T ), L1

loc(R)). In step
2 the limit function in the α → 0+ limit is shown to satisfy the definition of a weak
solution for the Cauchy problem. For the homogeneous case, this weak solution is, in
fact, entropy admissible.

Theorem 4.2 The sequence of averaged solutions uα : R × [0, T ] 7→ R, indexed by
α > 0, of (4.3)–(4.4) has a subsequence {uβ}β>0 that converges strongly to some
function u in C([0, T ], L1

loc(R)) as β → 0+. Moreover, this limit u is a weak solution
of (4.1)–(4.2), and we refer to this as the α–limit weak solution hereafter.

Proof Step 1: In order show the convergence of the solution sequence to a weak
solution, an L1–compactness result is invoked. In order to do so, we first establish the
following estimates:

(i) |uα(x, t)| ≤M1 for all x, t,
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(ii) T.V.(uα(·, t)) ≤M2 for all t,
(iii)

∫
R |u

α(x, t+ s)− uα(x, t)| dx ≤M3s for all s, t ≥ 0,

where the constants Mi for i = 1, 2, 3 are independent of α. These estimates imply that
there exists a subsequence (indexed by α still) and a function u such that limα→0 u

α =
u in C([0, T ], L1

loc(R)) [4].

To show estimate (i), the uniform boundedness of uα, recall that uα satisfies the
system in the mild[22] or broad[4] sense i.e.

uα(ξ, τ) = u0(x(0; ξ, τ)) +

∫ τ

0

h(x(t; ξ, τ), t, uα(x(t; ξ, τ), t) dt,

where t 7→ x(t; ξ, τ) is the unique integral solution of the IVP

ẋ = a(uα(x, t)),

x(τ) = ξ.

So we have the following,

|uα(ξ, τ)| ≤ ‖u0‖L∞ +

∫ τ

0

|h(x(t; ξ, τ), t, uα(x(t; ξ, τ), t)| dt

≤ ‖u0‖L∞ + C0 + |h|Lip sup
(ξ,τ)

∫ τ

0

|uα(x(t; ξ, τ), t)| dt,

where |h(x, t, 0)|L∞ ≤ C0. By Gronwall’s inequality

sup
(ξ,τ)

|uα(ξ, τ)| ≤ (‖u0‖L∞ + C0)e|h|LipT =: M1.

To show estimate (ii), the uniform boundedness of the total variation of the solutions
independent of α, differentiate (4.3) with respect to the spatial variable x to obtain

∂tu
α
x + (a(uα)uαx)x = ∂x(h(x, t, u)). (4.7)

Multiply (4.7) by the sign function sgn(uαx) then integrate over R with respect to x,

d

dt

∫
R
|uαx | dx+

∫
R

(a(uα)uαx)xsgn(uαx) dx =

∫
R
∂x(h(x, t, uα))sgn(uαx) dx. (4.8)

Observe that the second integral term on the left-hand side of (4.8) is zero by the
continuity of both a(uα) and uαx . The right-hand side can be bounded above as follows,∫

R
sgn(uαx)∂xh(x, t, uα) dx ≤

∫
R

∣∣∣∣∂h∂x
∣∣∣∣ dx+

∫
R

∣∣∣∣∂h∂u
∣∣∣∣ |uαx | dx

≤ C1 + C2

∫
R
|uαx | dx.

Thus
d

dt
‖uαx(·, t)‖L1 ≤ C1 + C2‖uαx(·, t)‖L1 which implies

T.V.(uα(·, t)) = ‖uαx(·, t)‖L1 ≤ (‖u′0‖L1 + C1T ) eC2T = CTT.V.(u0) =: M2.
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To obtain estimate (iii), observe that ∂tu
α = −a(uα)ux + h(x, t, uα). Integrating this

from the interval [t, t + s] then integrating over the real line with respect to the x
variable yields∫

R
|uα(x, t+ s)− uα(x, t)| dx

≤
∫
R

∫ t+s

t

|h(x, s, uα(x, r))− a(uα(x, r))uαx(x, r)| dr dx

≤ (C1 + C2M2)s.

for some constants C1, C2 independent of α.

Step 2: We claim that this limit function u is a weak solution.
Claim: The unique solutions to (4.3)–(4.4) satisfy∫ T

0

∫
R
|uα − k|φt + p(uα, k)φx + sgn(uα − k)h(x, t, uα)φdxdt

+

∫
R
|u0(x)− k|φ(x, 0) dx

=

∫ T

0

∫
R
|uα − k|

(
a(uα)− a(uα)

)
φx dx dt

+

∫ T

0

∫
R
|uα − k|

(
a(uα)− a(uα)

)
x
φdx dt. (4.9)

for every k ∈ R and every non-negative test function φ ∈ C∞c (R × (−∞, T )). Here
p(u, k) = sgn(u− k)(f(u)− f(k)).
To see this, notice that the solutions to (4.3)–(4.4) will satisfy

∂t(u
α − k)− (f(uα)− f(k))x + h(x, t, uα) = (a(uα)− a(uα))(uα − k)x.

Multiply this equation by sgnν(uα − k)φ, where

sgnν(x) =

 −1, if x < −ν,
x/ν, if |x| ≤ ν,
1, if x > ν,

then integrate over UT = R× (0, T ). Let wα := uα−k then integration by parts leads
to the following identity,∫∫

UT

sgnν(wα)(wα)φt + sgnν(wα)(f(uα)− f(k))φx dxdt

+

∫∫
UT

sgn′ν(wα) · φ[wα · wαt + wαx (f(uα)− f(k))] dxdt

+

∫∫
UT

sgnν(wα)h(x, t, uα)φdxdt

+

∫
R
sgnν(u0(x)− k)(u0(x)− k)φ(x, 0) dx

=

∫∫
UT

sgnν(wα)
(
a(uα)− a(uα)

)
wαφx dxdt

+

∫∫
UT

sgn′ν(wα)wαx

(
a(uα)− a(uα)

)
wαφdxdt

+

∫∫
UT

sgnν(wα)
(
a(uα)− a(uα)

)
x
wαφdxdt.
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By taking the limit as ν −→ 0 and noting that the limits of the second integrals
on both the left-hand and right-hand sides of this identity both converge to zero, we
obtain (4.9). If k = − sup

α>0
‖uα‖L∞ then the absolute values and signs drop accordingly,

and (4.5) and (4.9) imply that as α→ 0+,∫ T

0

∫ ∞
−∞

uφt + f(u)φx + h(x, t, u)φdxdt+

∫ ∞
−∞

u0(x)φ(x, 0) dx ≥ 0.

If k = sup
α>0
‖uα‖L∞ , then the sign changes (≤ 0). Thus,

∫ T

0

∫ ∞
−∞

uφt + f(u)φx + h(x, t, u)φdxdt+

∫ ∞
−∞

u0(x)φ(x, 0) dx = 0.

This completes the proof of the theorem.

Now consider (4.1)–(4.2) in the absence of source terms:

∂tu+ f(u)x = 0 in UT , (4.10)

u(x, 0) = u0(x) for x ∈ R. (4.11)

The following corollary shows that the sequence of solutions of the corresponding
regularized problem,

∂tu
α + a(uα)uαx = 0 in UT , (4.12)

uα(x, 0) = u0(x) for x ∈ R, (4.13)

converges to the entropy admissible solution of (4.10)–(4.11).

Corollary 4.3 (homogeneous) The α–limit weak solution of (4.12)–(4.13) is the
unique entropy admissible solution of (4.10)–(4.11).

Proof Let v = v(x, t) be the unique Krǔzkov entropy admissible solution to (4.10)-
(4.11). That is, v = v(x, t) is a weak solution that satisfies the following entropy
inequality: for every constant k ∈ R and every non-negative test function φ with
compact support in R× (0, T ),∫ T

0

∫
R
|v − k|φt + p(v, k)φx dxdt ≥ 0, (4.14)

where p(v, k) := sgn(v − k)(f(v)− f(k)).

Similar to the previous calculations, we can show that the unique solution to (4.12)
satisfies ∫ T

0

∫
R
|uα − k|φt + p(uα, k)φx dxdt

=

∫ T

0

∫
R
|uα − k|

(
a(uα)− a(uα)

)
φx dx dt

+

∫ T

0

∫
R
|uα − k|

(
a(uα)− a(uα)

)
x
φdx dt (4.15)

for every k ∈ R and every non-negative test function φ. Now by compactness and
(4.5), taking the α–limit to (4.15) shows that the α–limit weak solution u is Krǔzkov
entropy admissible. Specifically, the first integral on the right-hand side of (4.15) will
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limit to zero by compactness and the second integral on that same side is non-negative.
By the L1–stability of entropy solutions,

∫
R
|u(x, t)− v(x, t)| dx ≤

∫
R
|u(x, 0)− v(x, 0)| dx = 0.

That is, the sequence of regularized solutions {uα} must converge to u—the unique
entropy admissible solution to the IVP.

Remarks on the Helmholtz filter and quadratic fluxes

In order to build a better understanding of the conditions considered in Theorem
2 and its Corollary, we provide a motivating example which satisfy such conditions.
As we shall see, the flux, filter, and initial data can play key roles in obtaining the
conditions guaranteeing the convergence to the entropy admissible solution.

Let G be the Helmholtz filter and f = f(u) be a second-order real polynomial
with respect to u, f(u) = c0 + c1u+ c2u

2. This section shows that we can exploit the
structure of the filter and the convex flux to prove convergence to the weak solution.
For instance, we obtain the following

∫ T

0

∫
R
uαφt + f(uα)φx dxdt+

∫
R
u0(x)φ(x, 0) dx

= −
∫ T

0

∫
R

(
a(uα)− a(uα)

)
uαxφdx dt

= −
∫ T

0

∫
R

2c2(uα − uα)uαxφdx dt

=

∫ T

0

∫
R

2c2(α2uαxx)(uαx − α2uαxxx)φdx dt

= α2c2

∫ T

0

∫
R
∂x

(
uα

2
x − α2uα

2
xx

)
φdx dt

= c2

∫ T

0

∫
R

(
α2uαxx

)2
φx dx dt− α2c2

∫ T

0

∫
R

(uαx)
2
φx dx dt

:= E1 + E2.

E1 must limit to zero as α→ 0+ from the estimate

c2

∫ T

0

∫
R

∣∣α2uαxx
∣∣2 φx dx dt ≤ c2 ∫ T

0

∫
R
|uα − uα|2 |φx| dx dt

c2 ≤ ‖uα − uα‖L∞︸ ︷︷ ︸
≤2‖u0‖L∞

‖φx‖L∞
∫
supp(φ)

|uα − uα| dx dt

≤ 2c2M1‖φx‖L∞
∫
supp(φ)

|uα − uα| dx dt −→ 0 as α −→ 0+.
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It remains to be shown that the term E2 limits to zero as α→ 0+. This follows from
the following estimate

|E2| ≤ α2c2

∫ T

0

∫
R

∣∣∣(uαx)
2
φx

∣∣∣ dx dt
≤ α2c2 ‖uαx‖L∞︸ ︷︷ ︸

≤α−1‖u0‖L∞

‖φx‖L∞
∫ T

0

∫
R
|uαx| dx dt

≤ αc2M1‖φx‖L∞
∫ T

0

∫
R
|uαx| dx dt

≤ αc2M1M2‖φx‖L∞T −→ 0 as α −→ 0+.

Moreover, to apply Corollary 1, we impose the condition that for α � 1, uαx ≥ uαx
or −α2uαxxx = −α2gx ∗ uαxx ≥ 0 by definition of the Helmholtz filter. One can
certainly choose initial conditions and exploit the properties of the filter so that such
a condition holds—similar to what was done in [28]. Interestingly, these estimates
illustrate why many successful results for this regularization were seen for the Burgers’
and homentropic Euler equations under the Helmholtz filter.

5 Concluding Remarks

The results provided here validates our method as a successful shock-regularization
of scalar conservation laws including the basic inviscid Burgers’ equation (1.1) pro-
posed in [24]. Moreover, the global existence result in section 3 includes the higher-
dimensional Burgers’ equation studied in [27]:{

∂tu+ (u · ∇)u = 0 (x, t) ∈ RN × (0, T ),
u(x, 0) = u0(x) x ∈ RN , (5.1)

since this is equivalent to (2.2) with

Ai(x, t, u)
.
= diag(ui, ui, . . . , ui).

This global existence result also includes the regularized 1d homentropic Euler equa-
tions introduced in [29]. Here the authors examined{

ρt + (ρv)x = 0, (x, t) ∈ R× (0,∞),
(ρv)t + (ρuu+ P )x = 0, (x, t) ∈ R× (0,∞),

supplemented with initial data

(ρ, v)(x, 0) = (ρ0, v0)(x),

where P = ργ

γ with γ > 1. Recall that the eigenvalues for this 2× 2 system are

λ1 = v − c, λ2 = v + c,

where c = ρθ, with θ = γ−1
2 , is the sound speed. The corresponding Riemann-

invariants,

w1 = w1(ρ, v) = v +
ρθ

θ
, w2 = w2(ρ, v) = v − ρθ

θ
,

provide a coordinate transformation that diagonalizes the system:{
∂tw1 + λ2(w1, w2)∂xw1 = 0,
∂tw2 + λ1(w1, w2)∂xw2 = 0.
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The authors regularized this diagonalized system exactly as in our procedure by re-
placing the coefficients λi with the averaged quantity λi. This averaging of the diag-
onalized system, unfortunately, does not capture the entropy solution to the homen-
tropic Euler equations as was achieved for scalar equations. We include this example
because it illustrates the difficulty in successfully extending our technique to other
systems even those which are not initially symmetric although symmetrizable. Re-
cently, however, there have been several proposed extensions to our filtering method.
For instance, the authors in [23,26] introduced the observable divergence method as a
natural extension of the filtering in the inviscid Burgers’ equation to both the homen-
tropic Euler and full Euler equations in higher dimensions. They numerically studied
these regularized models and it did appear to add regularity to solutions while captur-
ing the entropy solution for the shock-tube and the Shu-Osher problems. In addition,
we placed further assumptions on the filtered conservation laws in order to show that
the limiting solution was entropy admissible. As demonstrated earlier, these assump-
tions resulted from the estimates we have obtained. Therefore, another aspect for
future examination will concern developing sharper estimates, if possible, that will
allow us to weaken these assumptions. Further, one can consider spatial averaging ap-
plied to initial boundary value problems to conservation laws. Initial-boundary value
problems for conservation laws have been studied in [1,2,9,17]. Due to the boundary
effects, entropy inequalities can be formulated using either vanishing viscosity or the
Riemann problem just as what is done for the purely initial value problem. A natural
question is if our inviscid regularization can be applied in this setting in the sense
that this method recovers the boundary entropy inequalities.

Nonetheless, it is our hope that, perhaps, analogous results for these generalized
techniques can be developed as was done here for scalar conservation laws and, at
the very least, encourage the study, development, and consideration of using similar
filtering techniques in the simulation of the models for inviscid flows.
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